Quickstart
Get up and running with Tenzro Cloud in under 5 minutes. This guide walks you through creating your first project, obtaining an API key, and making your first API call.
1. Create an Account
Visit console.cloud.tenzro.com and sign in with your Google account. Your first project will be created automatically.
2. Get Your API Key
Navigate to API Keys in the sidebar and click Create API Key. Copy your key - you'll need it for authentication.
3. Install the SDK
npm install @tenzro/cloud
4. Initialize the Client
index.ts
import { Tenzro } from '@tenzro/cloud';const client = new Tenzro({apiKey: process.env.TENZRO_API_KEY!,projectId: process.env.TENZRO_PROJECT_ID, // optional - sets default project});
5. Make Your First AI Call
Simple chat - just provide a prompt:
chat.ts
// Simple API - uses default model (gemini-2.5-flash)const response = await client.ai.chat('What is Tenzro Cloud?');console.log(response);// With optionsconst answer = await client.ai.chat('Explain vector databases', {temperature: 0.7,model: 'gemini-2.5-pro',});
6. Store and Retrieve Data
Use the key-value store:
kev.ts
// Get a key-value store by nameconst store = await client.kev.store('sessions');// Set a valueawait store.set('user:123', { name: 'John', role: 'admin' });// Get the valueconst user = await store.get('user:123');console.log(user.name); // "John"// Delete the valueawait store.delete('user:123');
7. Vector Search
Semantic search with automatic embeddings:
vec.ts
// Get a vector database by nameconst vectors = await client.vec.db('knowledge-base');// Insert documents (embeddings auto-generated)await vectors.upsert({documents: [{ id: 'doc-1', text: 'Machine learning transforms data into insights' },{ id: 'doc-2', text: 'Vector databases enable semantic search' },],});// Query with natural language (embedding auto-generated)const results = await vectors.query({text: 'How does ML work?',topK: 5,});for (const match of results) {console.log(match.metadata._text, 'score:', match.score);}
8. Create an AI Agent
Build agents with tools:
agent.ts
import { Tenzro, tool } from '@tenzro/cloud';// Define a custom toolconst weatherTool = tool('get_weather','Get current weather for a city',{city: { type: 'string', description: 'City name' },},['city']);// Create an agentconst agent = await client.agents.create({agentName: 'Weather Assistant',endpointId: 'your-endpoint-id', // Create via AI > EndpointssystemPrompt: 'You help users check the weather.',orchestrationPattern: 'SINGLE',tools: [weatherTool],});// Chat with the agentconst response = await client.agents.chat(agent.agentId, {message: 'What is the weather in Tokyo?',});console.log(response.content);
Next Steps
- Read the Authentication Guide
- Explore the API Reference
- Learn about AI Agents
- Deploy MCP Servers